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Abstract— Inter-area oscillation of angle differences be-
tween groups of power generators is considered the precur-
sor of large-scale blackouts. Because of the wide-area in-
terconnection of generators, merely attenuating oscillation
at individual sites is insufficient. In this paper, we consider
the design of generator parameters and the interconnection
strength such that the spectrum of the power system is
assigned to a prespecified region of the complex plane.
For identical generators, we obtain an explicit relation
between the spectrum of the linearized dynamics and the
spectrum of the interconnection matrix. This result allows
us to formulate the eigenvalue problem as a semidefinite
program, which can be solved efficiently. We provide an
example to demonstrate the effectiveness of our approach.
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I. DYNAMIC STABILITY IN POWER SYSTEMS

Stability is well recognized as the essential part of
power system operation. Traditionally, three types of
power system stability are studied: steady-state, dy-
namic, and transient stability [1]. In this paper, we
focus on dynamic stability, which is concerned with the
oscillatory behavior of power systems under small dis-
turbances [2]. While oscillations associated with a single
generator is well understood, oscillations associated with
groups of generators that span a wide area is still not
fully understood [3]. Many believe that growing inter-
area oscillations can result in catastrophic consequences
such as the 1996 Western blackout [4].

Research efforts have focused on detecting, moni-
toring, and suppressing wide-area oscillations (see [1]—
[5] and the references therein). In [3], detailed exper-
iments are conducted to study the effects of system
components such as line impedance, load character-
istics, and excitation signals on inter-area oscillation.
In [4], several signal-processing engines based on syn-
chrophasor measurements are developed for oscillation
monitoring. In [5], a comprehensive study of power
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system oscillations via eigenvalue sensitivity is con-
ducted. Furthermore, various control strategies ranging
from redispatch to voltage adjustments are developed
and validated against several test cases [5].

The fundamental mathematical tool for oscillation
studies is modal analysis of power systems. Eigenvalues
and eigenvectors of system dynamics have been proved
to encode valuable information for oscillations. There-
fore, most research work centers on eigen-analysis of
a given power system. In this paper, we consider the
parameter design of generators and their interconnection
strength to mitigate inter-area oscillations. For groups
of identical generators, we show that the eigenmodes of
oscillation are determined by the spectrum of the inter-
connection matrix. Armed with this result, we propose a
semidefinite programming (SDP) approach that assigns
eigenvalues within a desired region.

The rest of the paper is organized as follows. In
Section II, we present the linearized model for gener-
ator dynamics. In Section III, we perform a spectrum
analysis and propose a region of performance oscillation
mitigation. In Section IV, we provide an algorithm for
eigenvalue assignment based on semidefinite program-
ming. In Section V, we show the mitigation of oscillation
via an example. In Section VI, we conclude the paper
with a brief summary.

II. LINEARIZED SWING EQUATION

Following [6], we consider a network of N generators.
The motion of generator ¢ can be modeled as [1]

Mzol + Dzaz = Pm,,z' - Pe,ia

where M; is the inertia, D; is the damping, 6; is the
rotor angle, and P, ; and P, ; are the mechanical and
electrical power, respectively. The electrical power of
generator ¢ is given by [7]
Poi = gilVil* + Y gislVil[Vie| cos(6; — 6)
i~k
+ > bi| Vil | Vil sin(6; — 0),
i~k
where V; and g;; are the voltage and the self-admittance

of generator i, respectively, and g;; and b;; are the
conductance and susceptance of the line connecting



generators ¢ and k, respectively. Under the standard
assumptions [7] that conductances are negligible (i.e.,
gir =~ 0), angle differences are small (i.e., |6; — 0| < 1),
and voltages are constant with unit magnitude (i.e.,
|Vi| = 1), we obtain the linearized swing equation [2]

Mzel + DZQZ + Z bik(ei — Hk) = Pm,i- (1)
i~k

The state-space representation of (1) is given by
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where w = 6 is the angular velocity, I is the identity
matrix, and

M = diag{M;}?, D = diag{D;}}

are diagonal matrices. We note that the interconnection
of generators is encoded in matrix L, which is also
known as the graph Laplacian matrix.

ITI. SPECTRUM CONSTRAINTS

The oscillatory behavior of the system is determined
by the eigenvalues of matrix

0 1

A=| yr —mp | ®)

Let v = Yreal + jYimag be an eigenvalue of A. Note
that A has a zero eigenvalue irrespective of the choice
of inertia and damping coefficients, that is, M and D.
The reason is that the Laplacian matrix L has a zero
eigenvalue associated with the vector of all ones [8]

L1=0-1.

We can thus readily verify that v = [17 07]7 is an
eigenvector of A associated with v = 0.

Since the decay rate associated with an eigenmode
v is determined by the real part 7,ea; and since the
oscillation frequency is determined by the imaginary part
Yimag, W€ are interested in assigning the eigenvalues of
A within a suitable performance region, for example,

'Yimag
Vreal

R < Mea < R < 0, < C. “4)

Here, the upper bound R keeps the spectrum of A
from the imaginary axis, which can be considered as
a measure of the stability margin. The lower bound R
prevents trivial solutions that push the spectrum far left
into the complex plane. The upper bound C' on the ratio
between imaginary and real parts determines the angle
of the sector in the complex plane (e.g., see Fig. 2).
However, constraints on the spectrum of a generic
A-matrix in (3) are hard constraints. The reason is
that eigenvalues of a nonsymmetric matrix are typically

nonconvex and nonsmooth functions of the matrix ele-
ments [9], [10].

Following [5], we assume that all generators are
identical. Therefore,

Mi:a7 Dl:67

In this case, we can derive an explicit relation between
the spectrum of A and the spectrum of the interconnec-
tion matrix L.

Proposition 3.1: Let v and X be an eigenvalue of A
and L, respectively. Under condition (5), we have

N = i(—ﬁi\/BQ—éla)\). (6)

Proof: From the definition of eigenvalues of A,

fore=1,...,N. 5)

A=tv==| W o || o | =0

it follows that
V2 = YU
Lvy = —(ya+ B)ve.
Eliminating vy yields that

Lv; = —(a? + By)vs.
The solution of the quadratic equation
ay’ +By+A=0

is given by (6), which completes the proof. [ ]
Proposition 3.1 says that v has a nonzero imaginary
part if and only if

A > 6%/(4a). (N

When (7) holds, all complex eigenvalues share the same
real part, that is,

Yreal = _B/(QO‘)

IV. EIGENVALUE PLACEMENT VIA SEMIDEFINITE
PROGRAMMING

Given a network of identical generators, we wish to
design system parameters, namely, the inertia «, the
damping S, and the susceptance b;;, over all lines such
that the spectrum of A resides in the region of perfor-
mance (4). We next devise a strategy in Algorithm 1 and
prove its correctness in Proposition 4.1.

Proposition 4.1: The solution «, 3, and L from Al-
gorithm 1 results in matrix A in (3) whose spectrum
resides in region (4) except for the origin.

Proof: Let

0= <A <---< Ay

be the eigenvalues of L. From (6), it follows that the
pair ~y; + associated with A\; =0

s = 5 (% /I~ daky)

(07



Algorithm 1 Assignment of spectrum of A via semidef-
inite programming
1: Choose «, B > 0 such that
B B

R<-=<-—<R (8)
o 200

2: Solve the following semidefinite program

minimize  (1/2)trace (L) =), , bik
subject to L+ coJ = cof 9)
L j CNI

where co = 82/(4a), ey = B%(1 + C?)/(4c), and
J = (1/N)117, that is, a matrix with all elements
equal to 1/N.

is given by 14+ = 0 and v, = —f/a. From
condition (8), we have

R<vy_<R
Since J = (1/N)117 spans the nullspace of L, it

follows that the spectrum of L + c3J is the union
of ¢o and {N\;} for ¢ = 2,...,N. From the SDP-
constraints (9), we have

L+cyd=cod = o> 0o

and
L=<cyI = Ay <cpn.

Since Ay > ?/(4a), it follows that ~; + are complex
eigenvalues and their real parts are equal to —3/(2a) €
[R, R]. It remains to show that the ratio between
imaginary and real parts are bounded by C, that is,

VAaad; — 2 -
aiﬂ <C. (10)
B
With some algebra, (10) follows from
2 2 ~2
57 g)\i < L—'—C) i=2,...,N.
4o 4o
]

V. EXAMPLE

We consider a series connection of N = 5 generators
shown in Fig. 1. The inertia and the damping coefficients
are M; = D; =i fori=1,...,N. We set b;, =1 for
all lines ¢ ~ k. Figure 2 shows the eigenvalues of A.
Note that an eigenvalue sits at the origin because of
the zero eigenvalue of L. This is fact is independent

O O O—0 O
1 2 3 4 5

Fig. 1. Series connection of 5 generators.

Spectrum of original A-matrix
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Fig. 2. The spectrum of the original system does not reside in the
region of performance.

of the design parameters M;, D;, and b;;. We are
interested in assigning spectrum of A within the region
of performance (4) where R = —4, R = —1,and C = 3.

For identical generators with M; = « and D; = (8
for: = 1,...,N, we choose « = 1 and 8 = 3 to
satisfy (8). We use YALMIP [11] to solve the SDPs
in Algorithm 1. The solution from the SDP in (9) is
given by b12 = b45 = 4.50 and b23 = b34 = 6.75. The
total inertial, damping, and susceptance of the designed
system are 5, 15, and 22.5, respectively, as compared
with 15, 15, and 4 of the original system.

Figure 3 shows that the spectrum of the designed
system resides within the desired region. We inject a
disturbance at generator 1,

P (t) = e 7' sin(wt), 11

where 0 = —0.5 and w = 4.1.

Figure 5 and Figure 6 show the angle difference 6;—6;
for ¢ = 2,..., N for the original system and the de-
signed system, respectively. We note that the oscillation
of the original system is mitigated in both amplitude
and time length. In particular, the peak amplitude for
the original system is 0.17 which is twice of the peak
amplitude of the designed system. On the other hand,
the oscillation length for the design system is around 10
seconds which is half of the oscillation length for the
original system.

VI. CONCLUSIONS

In this paper, we design parameters of generators
and their interconnection to mitigate wide-area oscilla-
tion induced by disturbances. We propose a region of
performance for the spectrum of the designed system.
We show that for identical generators this problem can
be solved via semidefinite programming. An example
shows the effectiveness of our approach for the oscilla-
tion mitigation.



Spectrum of modified A-matrix

10 \
5
+
0 + + @
+
-5
-10
5 4 -3 -2 1 0 1

Fig. 3. The spectrum of the designed system with identical generators
resides in the desired region.

Disturbance injected at generator 1
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Fig. 4. Short-time disturbance input.
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